Gradient Confinement Induced Uniform Tensile Ductility in Metallic Glass

نویسندگان

  • X. L. Lu
  • Q. H. Lu
  • Y. Li
  • L. Lu
چکیده

Metallic glass (MG) generally fails in a brittle manner under uniaxial tension loading at room temperature. The lack of plastic strain of MG is due to the severe plastic instability via the easily formed one dominate shear band. There have been several approaches to improve the ductility in MG, but achieving uniform tensile ductility for monolithic MG in bulk size remains a challenge. Here we demonstrate a uniform tensile ductility of 12% achieved in a micrometer scale Ni-P amorphous film coated on a Ni substrate with gradient structure. Instead of a single run-away shear band, such a gradient structure generates massive extensive multiple shear bands in the film, leading to a record high tensile ductility in MG. The present finding highlights a novel route for achieving uniform tensile ductility in monolithic metallic glass with bulk size.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superior Tensile Ductility in Bulk Metallic Glass with Gradient Amorphous Structure

Over centuries, structural glasses have been deemed as a strong yet inherently 'brittle' material due to their lack of tensile ductility. However, here we report bulk metallic glasses exhibiting both a high strength of ~2 GPa and an unprecedented tensile elongation of 2-4% at room temperature. Our experiments have demonstrated that intense structural evolution can be triggered in theses glasses...

متن کامل

Bulk metallic glass composite with good tensile ductility, high strength and large elastic strain limit

Bulk metallic glasses exhibit high strength and large elastic strain limit but have no tensile ductility. However, bulk metallic glass composites reinforced by in-situ dendrites possess significantly improved toughness but at the expense of high strength and large elastic strain limit. Here, we report a bulk metallic glass composite with strong strain-hardening capability and large elastic stra...

متن کامل

Designing tensile ductility in metallic glasses

Effectiveness of a second phase in metallic glass heterostructures to improve mechanical properties varies widely. Unfortunately, methods to fabricate such heterostructures like foams and composites do not allow controlled variation of structural features. Here we report a novel strategy, which allows us to vary heterostructural features independently, thereby enabling a systematic and quantita...

متن کامل

Designing Bulk Metallic Glass Matr ix Composites with High Toughness and Tensile Ductility

Metallic glasses have been the subject of intense scientific study since the 1960s, owing to their unique properties such as high strength, large elastic limit, high hardness, and amorphous microstructure. However, bulk metallic glasses have not been used in the high strength structural applications for which they have so much potential, owing to a highly localized failure mechanism that result...

متن کامل

Ductile crystalline-amorphous nanolaminates.

It is known that the room-temperature plastic deformation of bulk metallic glasses is compromised by strain softening and shear localization, resulting in near-zero tensile ductility. The incorporation of metallic glasses into engineering materials, therefore, is often accompanied by complete brittleness or an apparent loss of useful tensile ductility. Here we report the observation of an excep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013